Domain Architecture of Protein-disulfide Isomerase Facilitates Its Dual Role as an Oxidase and an Isomerase in Ero1p-mediated Disulfide Formation
نویسندگان
چکیده
منابع مشابه
Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual ...
متن کاملEro1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p ...
متن کاملIdentification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the ...
متن کاملGlycosaminoglycans and protein disulfide isomerase-mediated reduction of HIV Env.
Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and ...
متن کاملProtein Disulfide Isomerase and Host-Pathogen Interaction
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2006
ISSN: 0021-9258
DOI: 10.1074/jbc.m511764200